Web Release Date: March 22,
Absorption and Fluorescence Excitation Spectra of 9-(N-carbazolyl)-anthracene: Effects of
Intramolecular Vibrational Redistribution and Diabatic Transitions Involving Electron
Transfer




and
Institut für Atomare und Analytische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany, Laboratoire de Chimie Quantique, CNRS URA 505, IRSAMC, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France, Organisch-Chemisches Institut der Westfälischen Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany, Institut für Chemie-Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany, Institut für Chemie der Humboldt Universität Berlin, Physikalische und Theoretische Chemie, Bunsenstrasse 1, 10117 Berlin, Germany, and Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
Received: October 20, 2000
Abstract:
The absorption and fluorescence excitation spectra of 9-(N-carbazolyl)-anthracene (C9A) in vibronically excited
S1 states are measured and calculated by means of a simple model. Accordingly, C9A is excited from torsional
states
0j> of the electronic ground-state S0 to diabatic torsional states
1l> of the bright electronically excited
state S1, which are coupled to states
2l> of the dark electronically excited-state S2. In addition, all torsional
states are coupled to the other vibrations of C9A. The model parameters are adapted from our previous papers
yielding good agreement of the experimental and theoretical fluorescence emission spectrum and fluorescence
lifetimes of C9A. The present additional agreement for the experimental and theoretical absorption and
fluorescence excitation spectra confirms the simple model, which implies rather weak couplings of the torsional
bright state S1 but strong coupling of the dark state S2 to the other vibrations of C9A, respectively. This
points to different electronic structures of these excited states. This conjecture is confirmed by quantum chemical
calculations based on density functional theory (DFT) that reveal the covalent structure of S1, in contrast
with the TICT (twisted intramolecular charge transfer) behavior of S2.